Abstract

We study the interplay between thermal undulations and electrostatic interactions for weakly charged surfactant bilayers by measuring the backscattering of light from very dilute lamellar phases of the non-ionic surfactant triethylene glycol monodecyl ether (C10E3) doped with small amounts of the anionic surfactant sodium dodecyl sulphate (SDS), both with and without added electrolyte. Upon charging, the lamellar phases show a transition from undulation to electrostatic stabilization. Non-lamellar structures develop if the molar mixing ratio exceeds . Deviations from ideal swelling, , where is the lamellar repeating distance and the membrane volume fraction, were detected for all lamellar phases. Salt-free lamellar phases with charge densities below , as well as more highly charged lamellar phases at high ionic strength show a universal logarithmic deviation from ideal swelling that was analyzed using theories for undulation stabilized lamellar phases. Deviations from ideal swelling for electrostatically stabilized lamellar phases were analyzed using theories recently developed for undulations in charged lamellar phases. The fits to the various theories yield a value of for the bending modulus of the C10E3 bilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.