Abstract
Let $M$ be a module over a commutative ring $R.$ A proper submodule $N$ of $M$ is called weakly $2$-absorbing, if for $r,s\in R$ and $x\in M$ with $0\neq rsx\in N,$ either $rs\in (N:M)$ or $rx\in N$ or $sx\in N.$ We study the behavior of $(N:M)$ and $\sqrt{(N:M)},$ when $N$ is weakly $2$-absorbing. The weakly $2$-absorbing submodules when $R=R_1\oplus R_2$ are characterized. Moreover we characterize the faithful modules whose proper submodules are all weakly $2$-absorbing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.