Abstract

Let M be a left R-module. Then a proper submodule P of M is called weakly prime submodule if for any ideals A and B of R and any submodule N of M such that ABN ⊆ P, we have AN ⊆ P or BN ⊆ P. We define weakly prime radicals of modules and show that for Ore domains, the study of weakly prime radicals of general modules reduces to that of torsion modules. We determine the weakly prime radical of any module over a commutative domain R with dim (R) ≦ 1. Also, we show that over a commutative domain R with dim (R) ≦ 1, every semiprime submodule of any module is an intersection of weakly prime submodules. Localization of a module over a commutative ring preserves the weakly prime property. An R-module M is called semi-compatible if every weakly prime submodule of M is an intersection of prime submodules. Also, a ring R is called semi-compatible if every R-module is semi-compatible. It is shown that any projective module over a commutative ring is semi-compatible and that a commutative Noetherian ring R is semi-compatible if and only if for every prime ideal B of R, the ring R/\B is a Dedekind domain. Finally, we show that if R is a UFD such that the free R-module R⊕ R is a semi-compatible module, then R is a Bezout domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call