Abstract
Let R be a ring with identity and let M be a unital left R-module. A proper submodule L of M is radical if L is an intersection of prime submodules of M. Moreover, a submodule L of M is isolated if, for each proper submodule N of L, there exists a prime submodule K of M such that N ⊆ K but L ⊈ K. It is proved that every proper submodule of M is radical (and hence every submodule of M is isolated) if and only if N ∩ IM = IN for every submodule N of M and every (left primitive) ideal I of R. In case, R/P is an Artinian ring for every left primitive ideal P of R it is proved that a finitely generated submodule N of a nonzero left R-module M is isolated if and only if PN = N ∩ PM for every left primitive ideal P of R. If R is a commutative ring, then a finitely generated submodule N of a projective R-module M is isolated if and only if N is a direct summand of M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.