Abstract

AbstractAqueous zinc‐ion batteries (AZIBs) are emerging as one of the most reliable energy storage technologies for scale‐up applications, but still suffer from the instability of Zn anode, which is mainly caused by the undesirable dendrite growth and side reactions. To tackle these issues, we formulate a new aqueous electrolyte with weak solvation effect by introducing low‐dielectric‐constant acetone to achieve H2O‐poor solvation structure of Zn2+. Experimental and theoretical calculation studies concurrently reveal that such solvation structure can: i) relieve the solvated H2O related side reactions, ii) suppress the dendrite growth by boosting the desolvation kinetics of Zn2+ and iii) in situ form solid electrolyte interface (SEI) to synergistically inhibit the side reaction and dendrite growth. The synergy of these three factors prolongs the cycling life of Cu/Zn asymmetric cell from 30 h to more than 800 h at 1 mA cm−2/1 mAh cm−2, and can work at more harsh condition of 5 mA cm−2/5 mAh cm−2. More encouragingly, Zn/V2O5 ⋅ nH2O full cell also shows enhanced cycling stability of 95.9 % capacity retention after 1000 cycles, much better than that with baseline electrolyte (failing at ≈700th cycle).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call