Abstract
We present a Lyapunov-type approach to the problem of existence and uniqueness of general law-dependent stochastic differential equations. In the existing literature, most results concerning existence and uniqueness are obtained under regularity assumptions of the coefficients with respect to the Wasserstein distance. Some existence and uniqueness results for irregular coefficients have been obtained by considering the total variation distance. Here, we extend this approach to the control of the solution in some weighted total variation distance, that allows us now to derive a rather general weak uniqueness result, merely assuming measurability and certain integrability on the drift coefficient and some non-degeneracy on the dispersion coefficient. We also present an abstract weak existence result for the solution of law-dependent stochastic differential equations with merely measurable coefficients, based on an approximation with law-dependent stochastic differential equations with regular coefficients under Lyapunov-type assumptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.