Abstract

It is common practice to treat small jumps of Levy processes as Wiener noise and thus to approximate its marginals by a Gaussian distribution. However, results that allow to quantify the goodness of this approximation according to a given metric are rare. In this paper, we clarify what happens when the chosen metric is the total variation distance. Such a choice is motivated by its statistical interpretation. If the total variation distance between two statistical models converges to zero, then no tests can be constructed to distinguish the two models which are therefore equivalent, statistically speaking. We elaborate a fine analysis of a Gaussian approximation for the small jumps of Levy processes with infinite Levy measure in total variation distance. Non asymptotic bounds for the total variation distance between n discrete observations of small jumps of a Levy process and the corresponding Gaussian distribution is presented and extensively discussed. As a byproduct, new upper bounds for the total variation distance between discrete observations of Levy processes are provided. The theory is illustrated by concrete examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.