Abstract
Nous considerons le modele standard de percolation de premier passage sur $\mathbb{Z}^{d}$ : nous associons a chaque arete $e$ du graphe un temps de passage $t(e)$ a valeurs dans $[0,+\infty]$, tel que $\mathbb{P}[t(e) p_{c}(d)$. De facon equivalente, nous considerons un modele de percolation de premier passage standard (fini) sur le graphe obtenu par une percolation de Bernoulli sur-critique realisee independamment. Nous prouvons un theoreme de forme faible sans aucune hypothese de moment. Nous prouvons aussi que la constante de temps correspondante est strictement positive si et seulement si $\mathbb{P}[t(e)=0]<p_{c}(d)$.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have