Abstract

In wavelet analysis, refinable functions are the bases of extension principles for constructing (weak) dual wavelet frames for [Formula: see text] and its reducing subspaces. This paper addresses refinable function-based dual wavelet frames construction in Walsh reducing subspaces of [Formula: see text]. We obtain a Walsh–Fourier transform domain characterization for weak [Formula: see text]-adic nonhomogeneous dual wavelet frames; and present a mixed oblique extension principle for constructing weak [Formula: see text]-adic nonhomogeneous dual wavelet frames in Walsh reducing subspaces of [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.