Abstract

The impact of an electric field on the electron localization problem is studied within the framework of a field-theoretic formulation. The investigation shows that the impact of the electric field on the localization corrections is governed by the interplay between two time scales, one set by the electric field, and the other by the phase relaxation rate. At very low temperatures the scaling of the conductivity is governed by the electric field. In this regime the conductivity depends logarithmically on the field, and an arbitrarily small electric field delocalizes the electron states. At higher temperatures the behavior of the conductivity is governed by the temperature scaling. In this regime the field has no impact on the observable leading localization corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.