Abstract

ABSTRACTThe intercalation of fluorine into graphite introduces defects into the highly crystalline pristine fibers. These defectsare studied using temperature-dependent resistivity and magnetoresistance measurements. A logarithmic increase in resistivity at low temperature is observed, whereas the high temperature behavior is metallic. At weak magnetic fields and low temperatures, a negative magnetoresistance is observed, which becomes positive at high fields. These effects are explainedusing the two theories of weak localization and hole-hole interaction. In the light of TEM pictures of the microstructure of the fluorinated fibers, the origin of the defects in the intercalated fibers is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call