Abstract

Social insect nestmates often differ in thermal tolerance (the range of temperatures at which an individual functions). Worker thermal physiology can covary with body size, development, genetics and gene expression. Because colonies rely on the integration of diverse colony members, individual thermal tolerance differences can affect group performance. The weak link hypothesis states that if workers differ in thermal sensitivity, then in variable thermal environments colonies can incur performance costs due to thermal stress effects on the most thermally sensitive worker types. We discuss possible adaptive colony responses that ameliorate the costs of thermal weak links. Individual differences in thermal tolerance have profound implications for the effects of temperature variation and climate change on animal societies. Social implications of worker weak links potentially drive macroecological patterns in caste ergonomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.