Abstract
Structural plasticity is the hallmark of the protocerebral mushroom bodies of adult insects. This plasticity is especially well studied in social hymenopterans. In adult worker honey bees, phenomena such as increased neuropil volume, increased dendritic branching, and changes in the details of synaptic microcircuitry are associated with both the onset of foraging and the accumulation of foraging experience. Prior models of the drivers of these changes have focused on differences between the sensory environment of the hive and the world outside the hive, leading to enhanced excitatory (cholinergic) inputs to the intrinsic neurons of the mushroom bodies (Kenyon cells). This article proposes experimental and bioinformatics-based approaches for the exploration of a role for changes in the inhibitory (GABAergic) innervation of the mushroom bodies as a driver of sensitive periods for structural plasticity in the honey bee brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.