Abstract

The statistical power of weak lensing measurements is principally driven by the number of high-redshift galaxies whose shapes are resolved. Conventional wisdom and physical intuition suggest this is optimized by deep imaging at long (red or near-IR) wavelengths, to avoid losing redshifted Balmer-break and Lyman-break galaxies. We use the synthetic Emission Line (“EL”)-COSMOS catalog to simulate lensing observations using different filters, from various altitudes. Here were predict the number of exposures to achieve a target z ≳ 0.3 source density, using off-the-shelf and custom filters. Ground-based observations are easily better at red wavelengths, as (more narrowly) are space-based observations. However, we find that SuperBIT, a diffraction-limited observatory operating in the stratosphere, should instead perform its lensing-quality observations at blue wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.