Abstract

Strong correlations occur in magic-angle twisted bilayer graphene (MATBG) when the octet of flat moiré minibands centered on charge neutrality (CN) is partially occupied. The octet consists of a single valence band and a single conduction band for each of four degenerate spin-valley flavors. Motivated by the importance of Hartree electrostatic interactions in determining the filling-factor-dependent band structure, we use a time-dependent Hartree approximation to gain insight into electronic correlations. We find that the electronic compressibility is dominated by Hartree interactions, that paramagnetic states are stable over a range of density near CN, and that the dependence of energy on flavor polarization is strongly overestimated by mean-field theory. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.