Abstract

It is known that in the Analytic Hierarchy Process (A.H.P.) a scale of relative importance for alternatives is derived from a pairwise comparisons matrix A = (aij). Priority vectors are basically provided by the following methods: the right eigenvector method, the geometric mean method and the arithmetic mean method. Antipriority vectors can also be considered; they are built by both the left eigenvector method and mean procedures applied to the columns of A. When the matrix A is inconsistent, priority and antipriority vectors do not indicate necessarily the same ranking. We deal with the problem of the reliability of quantitative rankings and we use quasi-linear means for providing a more general approach to get priority and antipriority vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.