Abstract
The aim of this paper is to study a classical pseudo-monotone and non-Lipschitz continuous variational inequality problem in real Hilbert spaces. Weak and strong convergence theorems are presented under mild conditions. Our methods generalize and extend some related results in the literature and the main advantages of proposed algorithms there is no use of Lipschitz condition of the variational inequality associated mapping. Numerical illustrations in finite and infinite dimensional spaces illustrate the behaviors of the proposed schemes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have