Abstract

Adhesive high-level replacement (HLR) systems have been recently introduced as a new categorical framework for graph tranfor- mation in the double pushout (DPO) approach. They combine the well- known concept of HLR systems with the concept of adhesive categories introduced by Lack and Sobocinski. While graphs, typed graphs, attributed graphs and several other variants of graphs together with corresponding morphisms are adhesive HLR cat- egories, such that the categorical framework of adhesive HLR systems can be applied, this has been claimed also for Petri nets. In this paper we show that this claim is wrong for place/transition nets and algebraic high-level nets, although several results of the theory for adhesive HLR systems are known to be true for the corresponding Petri net transfor- mation systems. In fact, we are able to define a weaker version of adhesive HLR categories, called weak adhesive HLR categories, which is still sufficient to show all the results known for adhesive HLR systems. This concept includes not only all kinds of graphs mentioned above, but also place/transition nets, algebraic high-level nets and several other kinds of Petri nets. For this reason weak adhesive HLR systems can be seen as a unifying framework for graph and Petri net transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.