Abstract

The goal of this paper is the generalization of parallelism and concurrency results for adhesive High-Level Replacement (HLR) systems to adhesive HLR systems with negative application conditions. These conditions restrict the application of a rule by expressing that a specific structure should not be present before or after applying the rule to a certain context. Such a condition influences thus each rule application or transformation and therefore changes significantly the properties of the replacement system. The effect of negative application conditions on parallelism and concurrency in the replacement system is described in the generalization of the following results, formulated already for adhesive HLR systems without negative application conditions: Local Church-Rosser Theorem, Parallelism Theorem and Concurrency Theorem. These important generalized results will support the development of formal analysis techniques for adhesive HLR systems with negative application conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.