Abstract
Protein complexes are aggregates of protein molecules that play important roles in biological processes. Detecting protein complexes from protein-protein interaction (PPI) networks is one of the most challenging problems in computational biology, and many computational methods have been developed to solve this problem. Generally, these methods yield high false positive rates. In this article, a semantic similarity measure between proteins, based on Gene Ontology (GO) structure, is applied to weigh PPI networks. Consequently, one of the well-known methods, COACH, has been improved to be compatible with weighted PPI networks for protein complex detection. The new method, WCOACH, is compared to the COACH, ClusterOne, IPCA, CORE, OH-PIN, HC-PIN and MCODE methods on several PPI networks such as DIP, Krogan, Gavin 2002 and MIPS. WCOACH can be applied as a fast and high-performance algorithm to predict protein complexes in weighted PPI networks. All data and programs are freely available at http://bioinformatics.aut.ac.ir/wcoach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.