Abstract
The WCAY (weighted channel attention YOLO) model, which is meticulously crafted to identify fracture features across diverse X-ray image sites, is presented herein. This model integrates novel core operators and an innovative attention mechanism to enhance its efficacy. Initially, leveraging the benefits of dynamic snake convolution (DSConv), which is adept at capturing elongated tubular structural features, we introduce the DSC-C2f module to augment the model’s fracture detection performance by replacing a portion of C2f. Subsequently, we integrate the newly proposed weighted channel attention (WCA) mechanism into the architecture to bolster feature fusion and improve fracture detection across various sites. Comparative experiments were conducted, to evaluate the performances of several attention mechanisms. These enhancement strategies were validated through experimentation on public X-ray image datasets (FracAtlas and GRAZPEDWRI-DX). Multiple experimental comparisons substantiated the model’s efficacy, demonstrating its superior accuracy and real-time detection capabilities. According to the experimental findings, on the FracAtlas dataset, our WCAY model exhibits a notable 8.8% improvement in mean average precision (mAP) over the original model. On the GRAZPEDWRI-DX dataset, the mAP reaches 64.4%, with a detection accuracy of 93.9% for the “fracture” category alone. The proposed model represents a substantial improvement over the original algorithm compared to other state-of-the-art object detection models. The code is publicly available at https://github.com/cccp421/Fracture-Detection-WCAY .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.