Abstract

A W-band frequency-polarization-diverse metasurface antenna (FPDMA) that can be used for coincidence imaging is proposed in this paper. Diverse radiation patterns can be generated by the FPDMA in both the frequency-domain and the polarization-domain, which can be used as different measurement modes in the coincidence imaging system. The working frequency of the FPDMA is extended to the W-band (76 GHz-81 GHz) to obtain higher resolution. The FPDMA is composed of a feeding module and a phase-random-modulation metasurface. The feeding module is a disordered-cavity, which can generate different internal field distributions at different working frequencies. The frequency-diverse feature of the field distribution would be inherited by the coupling slots and passed on to the radiation patterns of the FPDMA. The phase-random-modulation metasurface contains a variety of different metamaterial elements with different transmission phases and diverse polarization characteristics, which could generate polarization-diverse radiation patterns when excited by electromagnetic waves with different polarization. Therefore, when the disordered-cavity and the metasurface work together, radiation patterns show a dual sensitivity in both the frequency-domain and the polarization-domain. Performances of the FPDMA including the reflection coefficient $(S_{11})$, the radiation efficiency and correlation coefficients of radiation patterns generated under different conditions are evaluated through simulations. A simulated coincidence imaging experiment using the proposed FPDMA is also carried out and the target image is reconstructed successfully. The design is validated through simulated results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call