Abstract

AbstractWavy ribbons of carbon nanotubes (CNTs) are embedded in elastomeric substrates to fabricate stretchable conductors that exhibit excellent performance in terms of high stretchability and small resistance change. A CNT ribbon with a thin layer of sputtered Au/Pd film is transferred onto a prestrained poly(dimethylsiloxane) (PDMS) substrate and buckled out‐of‐plane upon release of the prestrain. Embedded in PDMS, the wavy CNT ribbon is able to accommodate large stretching (up to the prestrain) with little change in resistance. For a prestrain of 100%, the resistance increases only about 4.1% when the wavy CNT ribbon is stretched to the prestrain. A simple stretchable circuit consisting of a light‐emitting diode and two wavy ribbons is demonstrated and shows constant response on significant twisting, folding, or stretching. Fabricated with a simple buckling approach, the wavy CNT‐ribbon‐based stretchable conductors (e.g., interconnects and electrodes) could play an important role in stretchable electronics, sensors, photovoltaics, and energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.