Abstract

Elastomer-infiltrated vertically aligned carbon nanotube (VACNT) forests are good candidates for use as stretchable conductors that can retain the electrical properties under relatively large stretching. The electrical performance can be further enhanced in terms of high stretchability and small change in the electrical resistance by using a wavy configuration. In this work, we present a wavy-structured high-performance stretchable conductor prepared by a simple prestraining approach based on polydimethylsiloxane (PDMS)-infiltrated VACNT films. Prior to the infiltration process, the VACNT forests can also be easily micropatterned by a PDMS stamp-assisted contact transfer printing technique. The conductive VACNT forest patterns are fully infiltrated with highly elastic PDMS, and the PDMS/VACNT film is conformally and strongly bonded to the prestrained PDMS substrate with the help of an intermediate thin PDMS layer, resulting in mechanical robustness of the whole device. The fabricated wavy VACNT conductor shows a small resistance change ratio of less than 6% with a tensile strain of up to 100% (prestrained level) and a high reversibility under multiple stretching/releasing cycles with a maximum strain of 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.