Abstract
A shore-normal array of seven, bi-directional electromagnetic flowmeters and nine surface piercing, continuous resistance wave staffs were deployed across a multiple barred nearshore at Wendake Beach, Georgian Bay, Canada, and monitored for a complete storm cycle. Time-integrated estimates of total (ITVF) and net (INVF) sediment volume flux together with bed elevation changes were determined using depth-of-activity rods. The three bars, ranging in height from 0.10 to 0.40 m accreted during the storm (0.03 m), and the troughs were scoured (0.05 m). Sediment reactivation depths reached 0.14 m and 12% of the nearshore control volume was mobilized. However, the INVF value for the storm was less than 1% of the control volume revealing a near balance in sediment volume in the bar system. Landward migration of the inner, crescentic and second, sinuous bars occurred in association with an alongshore migration of the bar form itself; the outermost, straight, shore-parallel bar remained fixed in location. The surf zone was highly dissipative throughout the storm ( ϵ = 3.8 × 10 2–192 × 10 2) and the wave spectrum was dominated by energy at the incident frequency. Spectral peaks at frequencies of the first harmonic and at one quarter that of the incident wave were associated with secondary wave generation just prior to breaking and a standing edge wave, respectively. The former spectral peak was within the 95% confidence band for the spectrum while the latter contributed not more than 10% to the total energy in the surface elevation spectrum even near the shoreline. During the storm wave height exceeded 2 m ( H s) and periods reached 5 s ( T p k): orbital velocities exceeded 0.5 m s −1 ( u rm s) and were above the threshold of motion for the medium-to-fine sands throughout the storm. Shore-parallel flows in excess of 0.4 m s −1 were recorded with maxima in the troughs and minima just landward of the bar crest. The rate and direction of sediment flux is best explained by the interaction of antecedent bed slopes with spatial gradients in the mean and asymmetry of the shore-normal velocity field. These hydrodynamic parameters represent “steady” flows superimposed on the dominantly oscillatory motion and assumed a characteristic spatial pattern from the storm peak through the decay period. Increases spatially in the magnitudes of both the mean flows and flow asymmetries cause an increasing net transport potential (erosion); decreases in these values spatially cause a decreasing net transport potential and thus deposition. These transport potentials are increased or decreased through the gravity potential induced by the local bed slope. Shore-parallel flow was important in explaining sediment flux and morphological change where orbital velocities, mean flows and flow asymmetries were at a minimum.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have