Abstract

Abstract Direct Numerical Simulations (DNS) were conducted to study the shear instabilities in a one-layer model of coastal currents. The instabilities of the currents are affected by the wave-radiation damping, and depend on a convective Froude number, in a manner analogous to the known Mach-number effect in compressible flow. In addition to the energy loss due to the wave radiation, the shear instabilities are also affected by friction. In the limiting case of zero friction, the present DNS for the gravity-stratified flows of one layer are consistent with the LST (Linear Stability Theory) of Sandham and Reynolds (1991) for compressible flow. In the wave-less case, the DNS results agree with the LST of Chu, Wu and Khayat (1991) for open-channel flow. The general instabilities are correlated with two dimensionless parameters: convective Froude number and friction number. The convective Froude number, not the local Froude number, characterizes the wave radiation from the shear flows, while the friction num...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.