Abstract

Conventional medical ultrasound systems utilizing focus-beam imaging generally acquire multi-channel echoes at frequencies in tens of megahertz after each transmission, resulting in significant data volumes for digital beamforming. Furthermore, integrating state-of-the-art beamformers with transmission compounding substantially increases the beamforming complexity. Except for upgrading the hardware system for better computing performance, an alternative strategy for accelerating ultrasound data processing is the wavenumber beamforming algorithm, which has not been effectively extended to synthetic focus-beam transmission imaging. In this study, we propose a novel wavenumber beamforming algorithm to efficiently reduce the computational complexity of traditional focus-beam ultrasound imaging. We further integrate the wavenumber beamformer with a sub-Nyquist sampling framework, enabling ultrasonic systems to acquire echoes within the active bandwidth at significantly reduced rates. Simulation and experimental results indicate that the proposed beamformer offers image quality comparable to the state-of-the-art spatiotemporal beamformer while reducing the sampling rate and runtime by nearly nine-fold and four-fold, respectively. The proposed approach would potentially help the development of low-power consumption and portable ultrasound systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call