Abstract

The effects of a pressure jump and a following internal gravity wave on turbulence and plume diffusion in the stable planetary boundary layer are examined. The pressure jump was accompanied by a sudden increase in turbulence and plume dispersion. The effects of wave perturbations on turbulence statistics are analysed by calculating fluxes and variances with and without the wave signal for averaging times ranging from 1 to 30 min. The wave signals are obtained using a band-pass filter. It is shown that second-order turbulence quantities calculated without first subtracting the wave perturbations from the time are greater than those calculated when the wave signal is separated from the turbulence. Estimates of the vertical dispersion of an elevated tracer plume in the stable boundary layer are made using an elastic backscatter lidar. Plume dispersion observed 25 m downwind of the source increases rapidly with the arrival of the flow disturbances. Measured plume dispersion and plume centreline height correlate with the standard deviation of the vertical velocity but not with the wave signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.