Abstract

ABSTRACT The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary discs (PPDs). The majority of previous numerical simulations have focused on the turbulent properties of its saturated state. However, the saturation of the VSI manifests as large-scale coherent radially travelling inertial waves. In this paper, we study inertial-wave-disc interactions and their impact on VSI saturation. Inertial-wave linear theory is developed and applied to a representative global 2D simulation using the athena++ code. It is found that the VSI saturates by separating the disc into several radial wave zones roughly demarcated by Lindblad resonances (turning points); this structure also manifests in a modest radial variation in the vertical turbulence strength. Future numerical work should employ large radial domains to accommodate this radial structure of the VSI, while concurrently adopting sufficiently fine resolutions to resolve the parametric instability that attacks the saturated VSI inertial waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.