Abstract

The relevance of the problem under study is due to the fact that the comparison is made for wavelets constructed in the time and frequency domains. The wavelets constructed in the time domain include all discrete wavelets, as well as continuous wavelets based on derivatives of the Gaussian function. This article discusses the possibility of implementing algorithms for multiscale analysis of one-dimensional and two-dimensional signals with the above-mentioned wavelets and wavelets constructed in the frequency domain. In contrast to the discrete wavelet transform (Mallat algorithm), the authors propose a multiscale analysis of images with a multiplicity of less than two in the frequency domain, that is, the scale change factor is less than 2. Despite the fact that the multiplicity of the analysis is less than 2, the signal can be represented as successive approximations, as with the use of discrete wavelet transform. Reducing the multiplicity allows you to increase the depth of decomposition, thereby increasing the accuracy of signal analysis and synthesis. At the same time, the number of decomposition levels is an order of magnitude higher compared to traditional multi-scale analysis, which is achieved by progressive scanning of the image, that is, the image is processed not by rows and columns, but by progressive scanning as a whole. The use of the fast Fourier transform reduces the conversion time by four orders of magnitude compared to direct numerical integration, and due to this, the decomposition and reconstruction time does not increase compared to the time of multiscale analysis using discrete wavelets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.