Abstract

The false discovery rate (FDR) procedure has become a popular method for handling multiplicity in high-dimensional data. The definition of FDR has a natural Bayesian interpretation; it is the expected proportion of null hypotheses mistakenly rejected given a measure of evidence for their truth. In this article, we propose controlling the positive FDR using a Bayesian approach where the rejection rule is based on the posterior probabilities of the null hypotheses. Correspondence between Bayesian and frequentist measures of evidence in hypothesis testing has been studied in several contexts. Here we extend the comparison to multiple testing with control of the FDR and illustrate the procedure with an application to wavelet thresholding. The problem consists of recovering signal from noisy measurements. This involves extracting wavelet coefficients that result from true signal and can be formulated as a multiple hypotheses-testing problem. We use simulated examples to compare the performance of our approach to the Benjamini and Hochberg (1995, Journal of the Royal Statistical Society, Series B57, 289-300) procedure. We also illustrate the method with nuclear magnetic resonance spectral data from human brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.