Abstract
Operator fractional Brownian motion (OFBM) is the natural vector-valued extension of the univariate fractional Brownian motion. Instead of a scalar parameter, the law of an OFBM scales according to a Hurst matrix that affects every component of the process. In this paper, we develop the wavelet analysis of OFBM, as well as a new estimator for the Hurst matrix of bivariate OFBM. For OFBM, the univariate-inspired approach of analyzing the entry-wise behavior of the wavelet spectrum as a function of the (wavelet) scales is fraught with difficulties stemming from mixtures of power laws. Instead we consider the evolution along scales of the eigenstructure of the wavelet spectrum. This is shown to yield consistent and asymptotically normal estimators of the Hurst eigenvalues, and also of the eigenvectors under assumptions. A simulation study is included to demonstrate the good performance of the estimators under finite sample sizes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have