Abstract

AbstractIn this paper, we propose a new construction for the Mexican hat wavelets on shapes with applications to partial shape matching. Our approach takes its main inspiration from the well‐established methodology of diffusion wavelets. This novel construction allows us to rapidly compute a multi‐scale family of Mexican hat wavelet functions, by approximating the derivative of the heat kernel. We demonstrate that this leads to a family of functions that inherit many attractive properties of the heat kernel (e.g. local support, ability to recover isometries from a single point, efficient computation). Due to its natural ability to encode high‐frequency details on a shape, the proposed method reconstructs and transfers ‐functions more accurately than the Laplace‐Beltrami eigenfunction basis and other related bases. Finally, we apply our method to the challenging problems of partial and large‐scale shape matching. An extensive comparison to the state‐of‐the‐art shows that it is comparable in performance, while both simpler and much faster than competing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.