Abstract
ABSTRACTWe consider wavelet-based non linear estimators, which are constructed by using the thresholding of the empirical wavelet coefficients, for the mean regression functions with strong mixing errors and investigate their asymptotic rates of convergence. We show that these estimators achieve nearly optimal convergence rates within a logarithmic term over a large range of Besov function classes Bsp, q. The theory is illustrated with some numerical examples.A new ingredient in our development is a Bernstein-type exponential inequality, for a sequence of random variables with certain mixing structure and are not necessarily bounded or sub-Gaussian. This moderate deviation inequality may be of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.