Abstract

We consider non-linear wavelet-based estimators of density functions with stationary random fields, which are indexed by the integer lattice points in the N-dimensional Euclidean space and are assumed to satisfy some mixing conditions. We investigate their asymptotic rates of convergence based on thresholding of empirical wavelet coefficients and show that these estimators achieve nearly optimal convergence rates within a logarithmic term over a large range of Besov function classes Bp,qs. Therefore, wavelet estimators still achieve nearly optimal convergence rates for random fields and provide explicitly the extraordinary local adaptability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.