Abstract

The availability of graphics processing units (GPUs) provides a low-cost solution to real-time processing, which may benefit many remote sensing applications. In this paper, a spectral–spatial classification scheme for hyperspectral images is specifically adapted for computing on GPUs. It is based on wavelets, extended morphological profiles (EMPs), and support vector machine (SVM). Additionally, a preprocessing stage is used to remove noise in the original hyperspectral image. The local computation of the techniques used in the proposed scheme makes them particularly suitable for parallel processing by blocks of threads in the GPU. Moreover, a block-asynchronous updating process is applied to the EMP to speedup the morphological reconstruction. The results over different hyperspectral images show that the execution can be speeded up to $8.2\times$ compared to an efficient OpenMP parallel implementation, achieving real-time hyperspectral image classification while maintaining the high classification accuracy values of the original classification scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.