Abstract
ABSTRACTHyperspectral remote sensing plays an important role in a wide variety of fields. However, its specific application for land surface analysis has been constrained due to the different shapes of thick, opaque cloud cover. The reconstruction of missing information obscured by clouds in remote-sensing images is an area of active research. However, most of the available cloud-removal methods are not suitable for hyperspectral images, because they lose the spectral information which is very important for hyperspectral analysis. In this article, we developed a new spectral resolution enhancement method for cloud removal (SREM-CR) from hyperspectral images, with the help of an auxiliary cloud-free multispectral image acquired at different times. In the fixed hyperspectral image, spectra of the cloud cover pixels are reconstructed depending on the relationship between the original hyperspectral and multispectral images. The final resulting image has the same spectral resolution as the original hyperspectral image but without clouds. This approach was tested on two experiments, in which the results were compared by visual interpretation and statistical indices. Our method demonstrated good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.