Abstract

A novel instrument based on an improved off-axis alignment of integrated cavity output spectroscopy (OA-ICOS) in conjunction with a wavelength modulation (WM) technique, was developed using a DFB diode laser operating in the near infrared at 1.573 μm (6357.3 cm-1). The laser-based sensor employed a 44 cm optical cavity that provided an effective absorption path length of ∼68 m. A minimum detectable absorption of approximately 3.6 ppmv Hz-1/2 or 2.3×10-7 Hz-1/2 per optical pass was obtained using second harmonic detection. We demonstrated that by implementation of the WM technique to OA-ICOS in the near infrared, the detection sensitivity was improved by a factor of 14 compared to that obtained with OA-ICOS. Measurements of CO2 mixing ratios in ambient air have been performed by using both OA-ICOS and WM-OA-ICOS techniques for performance comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.