Abstract

A nitric oxide (NO) gas sensor based on a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.45 μm (1835 cm-1) and off-axis integrated cavity output spectroscopy combined with a wavelength-modulation technique was developed to determine NO concentrations at the sub-ppbv levels that are essential for a number of applications, such as medical diagnostics, environmental monitoring, and industrial process control. The sensor employs a 50-cm-long high-finesse optical cavity that provides an effective path length of ∼700 m. A noise equivalent (SNR=1) minimum detection limit of 0.7 ppbv with a 1-s observation time was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.