Abstract
In this Letter, we report an investigation of the feasibility and performance of wavelength-division multiplexed (WDM) optical communications using an integrated perfect soliton crystal as the multi-channel laser source. First, we confirm that perfect soliton crystals pumped directly by a distributed-feedback (DFB) laser self-injection locked to the host microcavity has sufficiently low frequency and amplitude noise to encode advanced data formats. Second, perfect soliton crystals are exploited to boost the power level of each microcomb line, so that it can be directly used for data modulation, excluding preamplification. Third, in a proof-of-concept experiment, we demonstrate seven-channel 16-quadrature amplitude modulation (16-QAM) and 4-level pulse amplitude modulation (PAM4) data transmissions using an integrated perfect soliton crystal as the laser carrier; excellent data receiving performance is obtained for various fiber link distances and amplifier configurations. Our study reveals that fully integrated Kerr soliton microcombs are viable and advantageous for optical data communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.