Abstract

In this Letter, we report an investigation of the feasibility and performance of wavelength-division multiplexed (WDM) optical communications using an integrated perfect soliton crystal as the multi-channel laser source. First, we confirm that perfect soliton crystals pumped directly by a distributed-feedback (DFB) laser self-injection locked to the host microcavity has sufficiently low frequency and amplitude noise to encode advanced data formats. Second, perfect soliton crystals are exploited to boost the power level of each microcomb line, so that it can be directly used for data modulation, excluding preamplification. Third, in a proof-of-concept experiment, we demonstrate seven-channel 16-quadrature amplitude modulation (16-QAM) and 4-level pulse amplitude modulation (PAM4) data transmissions using an integrated perfect soliton crystal as the laser carrier; excellent data receiving performance is obtained for various fiber link distances and amplifier configurations. Our study reveals that fully integrated Kerr soliton microcombs are viable and advantageous for optical data communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call