Abstract

A new, to our knowledge, method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. We inject light from a 4-ns rise-time pulsed broadband flash lamp into fibers of various lengths and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning a range of approximately 3000 A are recorded from a single flash-lamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength-dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step-index 200-mum-diameter SiO(2) fiber. The results agree with the transit time determined from the bulk glass refractive index to within ?0.035% for the visible (4000-7200-A) spectrum and 0.12% for the UV (2650-4000-A) spectrum and with the attenuation specified by the fiber manufacturer to within ?10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.