Abstract

The aim of this work was to study the diffraction effects in the ultrasonic field of piston source transducers and their importance for accurate measurements of attenuation and dispersion in viscoelastic materials. In laboratory measurements, the diffraction phenomena are mainly due to the beam spread of the ultrasonic wave propagating in viscoelastic materials. This effect is essentially related to the estimated attenuation and dispersion in the material. In this work, a frequency domain system identification approach, using the maximum likelihood estimator (MLE), was applied to the measured data in order to determine a function for correcting the diffraction losses in both normal and oblique incidences for a large frequency band (300 kHz to 3 MHz). The effective radius of the used transmitter was determined by the inverse problem when ultrasonic beam propagation was investigated in a water medium. Using the estimated radius, the propagation through viscoelastic materials was established, and the acoustic parameters of these materials were estimated. Attention was paid to the determination of the attenuation and dispersion in the materials. These quantities were compared to those obtained without diffraction correction in order to see the influence of introducing the diffraction correction into the propagation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.