Abstract

Photocatalytic oxidative dehydrogenation of propane (C3H8) into propene (C3H6) under mild conditions holds great potential in the chemical industry, but understanding how active species participate in C3H8 conversion remains a significant challenge. Here, the wavelength-dependent activities of bridging oxygen (Ob2-) and the Ti5c-bound oxygen adatom (OTi2-) of model rutile (R) TiO2(110) in C3H8 conversion have been investigated. Under 257 and 343 nm irradiation, hole-trapped OTi- and Ob- can abstract the hydrogen atom of C3H8, forming the CH3CH•CH3 radical and C3H6. However, the rate of C3H8 conversion with hole-trapped Ob- is strongly dependent on the wavelength, primarily producing the C3H7• radical. In the case of hole-trapped OTi-, C3H6 is the main product, which is nearly independent of wavelength. The differences in the wavelength-dependent activity and product selectivity are likely due to dynamic control rather than thermodynamic control. The result provides a deeper understanding of the dynamic processes involved in the conversion of light alkanes in TiO2 photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call