Abstract

This article reviews the recent progress in the growth and device applications of InAs/InP quantum dots (QDs) for telecom applications. Wavelength tuning of the metalorganic vapor-phase epitaxy grown single layer and stacked InAs QDs embedded in InGaAsP/InP (1 0 0) over the 1.55-μm region at room temperature (RT) is achieved using ultra-thin GaAs interlayers underneath the QDs. The GaAs interlayers, together with reduced growth temperature and V/III ratio, and extended growth interruption suppress As/P exchange to reduce the QD height in a controlled way. Device quality of the QDs is demonstrated by temperature-dependent photoluminescence (PL) measurements, revealing zero-dimensional carrier confinement and defect-free InAs QDs, and is highlighted by continuous-wave ground-state lasing at RT of narrow ridge-waveguide QD lasers, exhibiting a broad gain spectrum. Unpolarized PL from the cleaved side, important for realization of polarization insensitive semiconductor optical amplifiers, is obtained from closely stacked QDs due to vertical electronic coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call