Abstract
Today’s Transparent Optical Networks (TONs) are highly vulnerable to various physical-layer attacks, such as high-power jamming, which can cause severe service disruption or even service denial. The transparency of TONs enables certain attacks to propagate through the network, not only increasing their damage proportions, but also making source identification and attack localization more difficult. High-power jamming attacks causing in-band crosstalk in switches are amongst the most malicious of such attacks. In this paper, we propose a wavelength assignment scheme to reduce their damage assuming limited attack propagation capabilities. This complements our previous work in Furdek et al. (M. Furdek, N. Skorin-Kapov, M. Grbac, Attack-aware wavelength assignment for localization of in-band crosstalk attack propagation, IEEE/OSA Journal of Optical Communications and Networking 2 (11) (2010) 1000–1009) where we investigated infinite jamming attack propagation to find an upper bound on the network vulnerability to such attacks. Here, we consider a more realistic scenario where crosstalk attacks can spread only via primary and/or secondary attackers and define new objective criteria for wavelength assignment, called the PAR (Primary Attack Radius) and SAR (Secondary Attack Radius), accordingly. We formulate the problem variants as integer linear programs (ILPs) with the objectives of minimizing the PAR and SAR values. Due to the intractability of the ILP formulations, for larger instances we propose GRASP (Greedy Randomized Adaptive Search Procedure) heuristic algorithms to find suboptimal solutions in reasonable time. Results show that these approaches can obtain solutions using the same number of wavelengths as classical wavelength assignment, while significantly reducing jamming attack damage proportions in optical networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.