Abstract
This work presents an algorithm for the planning phase of wavelength division multiplexing (WDM) optical networks considering the impact of physical layer attacks. Since the signals in transparent WDM networks are transmitted all-optical, these networks are vulnerable against high-power jamming attacks. Due to crosstalk induced interactions among different connections, malicious high-power signals are spread in the network. To this end, it is necessary to plan an optical network in a way that the spread of an attack is minimized. In this work an Integer Linear Programming (ILP) formulation is proposed that addresses the problem of Routing and Wavelength Assignment (RWA) with the objective to minimize the propagation of the introduced high-power malicious signals. The physical layer attack propagation is modeled as interactions among connections through in-band channel crosstalk. Additionally, Linear Programming (LP) relaxation techniques are used to handle larger network instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.