Abstract
We report on an attempt to accurately wavelength calibrate four nights of data taken with the Keck HIRES spectrograph on QSO PHL957, for the purpose of determining whether the fine structure constant was different in the past. Using new software and techniques, we measured the redshifts of various Ni II, Fe II, Si II, etc. lines in a damped Lyalpha system at z = 2.309. Roughly half the data were taken through the Keck iodine cell which contains thousands of well calibrated iodine lines. Using these iodine exposures to calibrate the normal Th-Ar Keck data pipeline output, we found absolute wavelength offsets of 500 m s{sup -1} to 1000 m s{sup -1} with drifts of more than 500 m s{sup -1} over a single night, and drifts of nearly 2000 m s{sup -1} over several nights. These offsets correspond to an absolute redshift of uncertainty of about DELTAz approx 10{sup -5}(DELTAlambda approx 0.02 A), with daily drifts of around DELTAz approx 5 x 10{sup -6} (DELTAlambda approx 0.01 A), and multiday drifts of nearly DELTAz approx 2 x 10{sup -5}(approx0.04 A). The causes of the wavelength offsets are not known, but since claimed shifts in the fine structure constant wouldmore » result in velocity shifts of less than 100 m s{sup -1}, this level of systematic uncertainty may make it difficult to use Keck HIRES data to constrain the change in the fine structure constant. Using our calibrated data, we applied both our own fitting software and standard fitting software to measure DELTAalpha/alpha, but discovered that we could obtain results ranging from significant detection of either sign, to strong null limits, depending upon which sets of lines and which fitting method were used. We thus speculate that the discrepant results on DELTAalpha/alpha reported in the literature may be due to random fluctuations coming from underestimated systematic errors in wavelength calibration and fitting procedure.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.