Abstract

A new 3-D microwave imaging technique is proposed for the detection of a position and size of a spherical object in a dielectric sample located in a waveguide system. The reconstruction is based on a radial basis function neural network inversion, backed by finite difference time domain analysis and requires only elementary measurements of complex reflection and transmission coefficients. Functionality of the technique is illustrated by computational experiments in reconstructing the parameters of a glass sphere and an air bubble in a rectangular Teflon block. It is shown that, at 915 MHz, the spheres of not less than 15 mm diameter are reconstructed with the average errors of 0.9%-2.2%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.