Abstract

Nonlinear photonic structures with a modulated second-order nonlinearity are used widely for quasi-phase-matched parametric processes. Creating three-dimensional (3D) nonlinear photonic structures is promising but still challenging, since standard poling methods are limited to two-dimensional structures. Light-induced quasi-phase matching (QPM) can overcome this issue by a depletion of the second-order nonlinearity with focused femtosecond laser pulses. We report, to the best of our knowledge, the first integration of a 3D QPM structure in the core of a lithium niobate waveguide applying light-induced fabrication. Depressed-cladding waveguides and embedded QPM structures are fabricated by femtosecond laser lithography. The 3D capability is exploited by splitting the QPM gratings in the waveguide core into two or four parts, respectively. These monolithic nonlinear waveguides feature parallel multi-wavelength frequency conversion. Finally, we demonstrate a concept for second-harmonic beam shaping taking advantage of a helically twisted nonlinear structure. Our results open new avenues for creating highly efficient advanced QPM devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.