Abstract

A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call